Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard detail
CCSS.Math.Content.HSF-TF.A.2
Standard
Depth 3Parent ID: 15FA57A0349B4D42A265C9E44BCB9CB8Standard set: Grades 9, 10, 11, 12
Original statement
Quick facts
- Statement code
- CCSS.Math.Content.HSF-TF.A.2
- List ID
- 2.
- Standard ID
- 7561CBA61C8D44A2BA275F057DE84FD1
- ASN identifier
- S1143607
- Subject
- Common Core Mathematics
- Grades
- 09, 10, 11, 12
- Ancestor IDs
- 15FA57A0349B4D42A265C9E44BCB9CB89BCA5105E8F94164A8C539D29FEA4A19DBC385CA20BD4319A215468CCB0FDE70
- Source document
- Common Core State Standards for Mathematics (2010)
- License
- CC BY 3.0 US