Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard detail
CCSS.Math.Content.HSF-TF.A.2
Standard
Depth 2Parent ID: 0B13FE26FA344DCA998C7DEDEBC7E0BFStandard set: High School — Functions
Original statement
Quick facts
- Statement code
- CCSS.Math.Content.HSF-TF.A.2
- List ID
- 2.
- Standard ID
- 0A8CB87ECFF541B69DCD30731F122EA6
- ASN identifier
- S1143607
- Subject
- Common Core Mathematics
- Grades
- 09, 10, 11, 12
- Ancestor IDs
- 0B13FE26FA344DCA998C7DEDEBC7E0BF7BF5A5A0CCB701324A4E14109FE13BD5
- Source document
- Common Core State Standards for Mathematics (2010)
- License
- CC BY 3.0 US