Standard set
Grade 7
Standards
Showing 72 of 72 standards.
C3AA3A0C6C194E099DA1552A0F69B960
Standards for Mathematical Practice
54AEA7EDB69E4D398E2B33C1C24B42A4
Literacy Skills for Mathematical Proficiency
Domain
Domain
Geometry
Domain
Domain
Ratios and Proportional Relationships
Domain
Domain
The Number System
Domain
Domain
Expressions and Equations
Domain
Domain
Statistics and Probability
MP1
Standard
Make sense of problems and persevere in solving them.
MP2
Standard
Reason abstractly and quantitatively.
MP3
Standard
Construct viable arguments and critique the reasoning of others.
MP4
Standard
Model with mathematics.
MP5
Standard
Use appropriate tools strategically.
MP6
Standard
Attend to precision.
MP7
Standard
Look for and make use of structure.
MP8
Standard
Look for and express regularity in repeated reasoning.
LSMP1
Standard
Use multiple reading strategies.
LSMP2
Standard
Understand and use correct mathematical vocabulary.
LSMP3
Standard
Discuss and articulate mathematical ideas.
LSMP4
Standard
Write mathematical arguments.
7.G.A
Cluster
Draw, construct, and describe geometrical figures and describe the relationships between them.
7.G.B
Cluster
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
7.RP.A
Cluster
Analyze proportional relationships and use them to solve real-world and mathematical problems.
7.NS.A
Cluster
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
7.EE.A
Cluster
Use properties of operations to generate equivalent expressions.
7.EE.B
Cluster
Solve real-life and mathematical problems using numerical and algebraic expressions and equations and inequalities.
7.SP.A
Cluster
Use random sampling to draw inferences about a population.
7.SP.B
Cluster
Draw informal comparative inferences about two populations.
7.SP.C
Cluster
Investigate chance processes and develop, use, and evaluate probability models.
7.SP.D
Cluster
Summarize and describe numerical data sets.
7.G.A.1
Content Standard
Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G.A.2
Content Standard
Draw geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.B.3
Content Standard
Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G.B.4
Content Standard
Know and use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
7.G.B.5
Content Standard
Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
7.RP.A.1
Content Standard
Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.
7.RP.A.2
Content Standard
Recognize and represent proportional relationships between quantities.
7.RP.A.3
Content Standard
Use proportional relationships to solve multi-step ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
7.NS.A.1
Content Standard
Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A.2
Content Standard
Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.A.3
Content Standard
Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)
7.EE.A.1
Content Standard
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A.2
Content Standard
Understand that rewriting an expression in different forms in a contextual problem can provide multiple ways of interpreting the problem and how the quantities in it are related.
7.EE.B.3
Content Standard
Solve multi-step real-world and mathematical problems posed with positive and negative rational numbers presented in any form (whole numbers, fractions, and decimals).
7.EE.B.4
Content Standard
Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
7.SP.A.1
Content Standard
Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP.A.2
Content Standard
Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.
7.SP.B.3
Content Standard
Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.
7.SP.B.4
Content Standard
Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.
7.SP.C.5
Content Standard
Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around ½ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP.C.6
Content Standard
Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.
7.SP.C.7
Content Standard
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
7.SP.D.8
Content Standard
Summarize numerical data sets in relation to their context.
7.RP.A.2.a
Component
Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).
7.RP.A.2.b
Component
Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2.c
Component
Represent proportional relationships by equations.
7.RP.A.2.d
Component
Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.
7.NS.A.1.a
Component
Describe situations in which opposite quantities combine to make 0.
7.NS.A.1.b
Component
Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real world contexts.
7.NS.A.1.c
Component
Understand subtraction of rational numbers as adding the additive inverse, p – q = p + (–q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1.d
Component
Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.2.a
Component
Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (–1)(–1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2.b
Component
Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then –(p/q) = (–p)/q = p/(–q). Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2.c
Component
Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.2.d
Component
Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
7.EE.B.3.a
Component
Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate.
7.EE.B.3.b
Component
Assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.B.4.a
Component
Solve contextual problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
7.EE.B.4.b
Component
Solve contextual problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality on a number line and interpret it in the context of the problem.
7.SP.C.7.a
Component
Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.
7.SP.C.7.b
Component
Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.
7.SP.D.8.a
Component
Give quantitative measures of center (median and/or mean) and variability (range and/or interquartile range), as well as describe any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
7.SP.D.8.b
Component
Know and relate the choice of measures of center (median and/or mean)and variability (range and/or interquartile range) to the shape of the data distribution and the context in which the data were gathered.
Framework metadata
- Source document
- Tennessee Academic Standards: Mathematics (2016)
- Normalized subject
- Math